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Abstract: The rationality of the takeoff point and the precision of muscle strength are key factors 
determining elite hurdlers' hurdling efficiency, rhythm between hurdles, and injury risk. Current 
training relies on coaches' subjective experience (e.g., step counting/visual estimation) to determine 
the takeoff point, while muscle strength parameters (e.g., electromyographic activation timing, peak 
force) lack real-time quantification. This hinders the development of personalized training programs 
(tailored for lower-body strength, flexibility, etc.), limiting athletic performance while increasing 
the risk of muscle injuries (quadriceps/hamstrings) during the takeoff phase. This study employed a 
proprietary lightweight monitoring system to analyze 22 elite national/provincial hurdlers (15 males, 
7 females; including 8 National Athletes and 14 First-Class Athletes). By integrating multimodal 
data and applying machine learning, the system overcomes traditional empirical limitations to 
enable personalized quantification of takeoff points. This approach enhances muscle force precision 
and athletic performance while reducing injury risk. The findings demonstrate that the “data 
collection-model prediction-intervention-outcome validation” framework is replicable for complex 
track and field events, validating the feasibility of integrating sports technology with competitive 
training. 
 
Keywords: Intelligent Muscle Force Monitoring System; Elite Hurdle Athletes; Personalized 
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1 Introduction 
1.1 Research Background 
In the development of contemporary competitive sports, the Olympic spirit of "Citius, Altius, 
Fortius" drives all events to continuously break performance boundaries. The in-depth integration of 
technological innovation and scientific training has become the core driving force for elite athletes 
to achieve leaps in competitive performance. As a fundamental event in competitive sports, track 
and field includes hurdle events that combine speed, strength, technique, and rhythm, making them 
an important indicator of a country’s comprehensive track and field strength. The technical 
complexity of hurdle events is reflected in multiple links, among which the take-off phase, as a key 
node connecting the approach run and hurdle clearance, directly determines hurdle clearance 
efficiency, inter-hurdle rhythm stability, and overall competitive performance. The precision of 
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muscle force is the core element ensuring the quality of take-off technology and reducing injury 
risks. 
 
With the rapid iteration of sports science and technology, the traditional training model relying on 
coaches’ subjective experience has gradually exposed limitations. In elite hurdle training, coaches 
mostly determine take-off points based on experience-based methods such as "step counting + 
visual observation". Although this method has accumulated certain effects in long-term practice, it 
is difficult to avoid judgment deviations caused by individual differences—elite athletes vary 
significantly in lower limb strength distribution, flexibility, and step frequency. A unified take-off 
point standard or judgment based on majority experience often fails to adapt to each athlete’s 
physiological and technical characteristics, leading to problems such as muscle compensation, 
insufficient force, or excessive load during take-off for some athletes. At the same time, muscle 
force is a dynamic and abstract process, and key parameters such as activation timing, force peaks, 
and muscle group coordination are difficult to quantify through visual observation. Coaches can 
only infer force effects indirectly through athletes’ technical performance (e.g., hurdle clearance 
height, landing stability). This "result-driven cause inference" model lacks real-time performance 
and precision, making it impossible to detect and correct force deviations in a timely manner or 
develop refined training plans for individuals. 
 
In recent years, the application of intelligent monitoring technology in competitive sports has 
provided a new path to address this pain point. The maturity of multimodal data collection methods 
such as surface electromyography (sEMG), inertial measurement, and plantar pressure sensing has 
made it possible to capture real-time physiological and kinematic parameters of athletes during 
training; the development of artificial intelligence technologies such as machine learning and big 
data analysis has provided algorithmic support for in-depth interpretation of data and personalized 
decision-making output. Against this background, constructing an Intelligent Muscle Force 
Monitoring System integrating multimodal data collection, intelligent analysis, and real-time 
feedback functions, and applying it to the take-off training of elite hurdle athletes, can not only 
realize the quantification and personalization of take-off point selection but also precisely regulate 
the muscle force process, promoting the transformation of hurdle training from "experience-driven" 
to "data-driven". This is not only an inevitable trend of sports science and technology empowering 
competitive training but also a practical need to enhance the competitiveness of China’s elite hurdle 
events. 
 
1.2 Research Significance 
The significance of this study is reflected in three dimensions: theory, practice, and industry 
development. At the theoretical level, this study will fill the theoretical gap in the in-depth 
integration of intelligent monitoring technology and specialized hurdle training. Current research on 
sports intelligent monitoring mostly focuses on macro competitive performance evaluation or 
general muscle force analysis, with few specialized studies on the take-off phase of hurdle 
events—especially studies combining multimodal data with machine learning to construct a 
"take-off point - muscle force - competitive performance" correlation model are even scarcer. By 
systematically sorting out the technical characteristics and muscle force mechanisms of the hurdle 
take-off phase, clarifying the core functional modules and data collection dimensions of the 
intelligent monitoring system, and establishing an optimal take-off point prediction model based on 
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individual data, this study can enrich the theoretical system of interdisciplinary disciplines such as 
sports training science, sports biomechanics, and sports information technology, and provide a 
theoretical framework and research paradigm for the subsequent application of intelligent 
technology in specialized track and field training. 
 
At the practical level, the results of this study will provide an operable intelligent solution for elite 
hurdle training. For athletes, the Intelligent Muscle Force Monitoring System can provide real-time 
feedback on take-off point deviations and muscle force problems, helping them establish a 
closed-loop awareness of "force perception - technical adjustment", transforming from passive 
acceptance of coach guidance to active optimization of technical movements, and improving 
training autonomy and efficiency. For coaches, the quantitative data output by the system can 
provide an objective basis for formulating training plans, avoiding subjective deviations in 
experience-based judgment, realizing "one-on-one" personalized training, and tracking athletes’ 
training progress through data to adjust training intensity and focus in a timely manner. For training 
teams, the system’s injury risk early warning function can reduce the incidence of training injuries, 
ensure the continuity of athletes’ training and the stability of their competitive state, and provide 
safety guarantees for preparing for major competitions. 
 
At the industry development level, this study will promote the in-depth integration of sports science 
and technology with competitive training, providing references for other technical sports. As a 
representative of technically complex track and field events, hurdle events have strong radiating 
effects in their intelligent training research results—the "multimodal data collection - intelligent 
modeling - training intervention" framework constructed in the study can be migrated to other 
technical track and field events such as high jump and long jump, and even applied to sports 
requiring both technique and strength such as gymnastics, fencing, and wushu, promoting the 
intelligent upgrading of training models in the entire competitive sports field. At the same time, the 
exploration of system lightweight, real-time performance, and multi-scenario adaptability in the 
study will also provide directions for the research and development of intelligent sports equipment, 
promoting the innovative development of the sports science and technology industry and forming a 
virtuous cycle of "technology R&D - training application - industrial upgrading". 
 
1.3 Research Status at Home and Abroad 
1.3.1 Foreign Research Status 
Foreign research on sports intelligent monitoring technology started early, and certain 
accumulations have been formed in the application exploration of hurdle training. In terms of 
muscle force monitoring, sports science and technology developed countries such as the United 
States and Europe have widely applied surface electromyography (sEMG) technology to the 
evaluation of athletes’ muscle function, with research focusing on the activation characteristics of 
key muscle groups in different sports phases—for example, a research team from the German 
Institute of Sports Biomechanics analyzed the activation timing of muscle groups in the take-off leg 
and swing leg of hurdle athletes using sEMG technology, and found that the coordinated activation 
time difference between the quadriceps femoris and hamstrings was negatively correlated with 
hurdle clearance efficiency. This conclusion provides a theoretical basis for the regulation of muscle 
force precision. At the same time, the integrated application of inertial measurement units (IMUs) 
and plantar pressure sensing technology is also relatively mature. For example, a sports technology 
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company in the United States has developed wearable devices that can collect real-time joint angles, 
angular velocities, and plantar pressure distribution data of athletes, and generate kinematic analysis 
reports through a cloud platform. These devices have been tested in professional track and field 
teams in some European and American countries, mainly for technical movement correction and 
injury risk early warning. 
 
In terms of intelligent decision-making, foreign research focuses more on the application of 
machine learning algorithms in the interpretation of training data. A research team from 
Loughborough University in the United Kingdom constructed a technical movement classification 
model based on support vector machines (SVM) using training data of hurdle athletes, which can 
identify the types of technical deviations during the take-off phase. However, this model only relies 
on kinematic data and does not include muscle force parameters, resulting in insufficient 
adaptability to individual differences. In addition, foreign research on take-off point selection 
mostly starts from the perspective of sports biomechanics, calculating the optimal take-off point 
range by establishing mechanical models. However, these models are mostly based on general 
physiological parameters and lack personalized adjustments for each athlete, making it difficult to 
meet the refined needs of elite training. Overall, foreign research has advantages in the maturity of 
technical application and algorithm advancement, but there is still room for improvement in 
specialized adaptation (e.g., multimodal data fusion for the hurdle take-off phase) and personalized 
decision-making. 
 
1.3.2 Domestic Research Status 
Domestic research on sports intelligent monitoring technology began in the early 21st century, and 
in recent years, under the promotion of national policies such as "Integration of Sports and 
Education" and "Sports Development Driven by Science and Technology", relevant research has 
shown a rapid development trend. In the field of hurdle events, domestic research mainly focuses on 
two directions: one is traditional sports biomechanical analysis, which studies the technical 
characteristics of hurdle athletes through high-speed photography, 3D motion capture, and other 
technologies. For example, a research team from Beijing Sport University conducted a 
biomechanical analysis of the take-off technology of China’s elite hurdle athletes and proposed 
reference ranges for technical indicators such as take-off angle and ground reaction force. However, 
most of these studies are offline analyses and cannot provide real-time guidance for training; the 
other is the application exploration of intelligent monitoring technology. Research teams from 
universities such as Shanghai University of Sport and Wuhan Sports University have attempted to 
combine sEMG technology with IMU technology to develop monitoring devices suitable for hurdle 
training. However, existing devices mostly have problems such as single function (e.g., only 
capable of data collection, lacking analysis and feedback functions) and insufficient lightweight 
design (large sensor size, affecting athletes’ movements), and have not yet formed a complete 
"collection - analysis - feedback" closed loop. 
 
In terms of personalized training, domestic research mostly emphasizes the combination of 
experience and data, but experience still dominates in practical application. Although some 
provincial and municipal track and field teams have introduced intelligent monitoring devices, the 
frequency and effect of device use are limited due to coaches’ insufficient data interpretation ability 
and poor adaptability of devices to training scenarios. In addition, there are few intelligent studies 
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on take-off point selection, and existing studies mostly establish general models based on group 
data, lacking quantitative analysis of individual differences among elite athletes. In general, 
domestic research has continuously improved the tightness of technical R&D and specialized 
integration, but there is still a certain gap with advanced foreign levels in system integration, 
algorithm precision, and practical application implementation, and there is an urgent need to 
construct a complete Intelligent Muscle Force Monitoring System adapted to elite hurdle training. 
 
1.4 Research Content and Methods 
1.4.1 Research Content 
The core content of this study revolves around the construction, application, and value verification 
of the Intelligent Muscle Force Monitoring System, specifically including four aspects: first, 
theoretical analysis of the technical characteristics and muscle force mechanisms of the hurdle 
take-off phase, clarifying the core influencing factors of take-off point selection and muscle force, 
and determining the key parameter dimensions to be collected by the system by sorting out the 
theories of hurdle sports biomechanics and training science; second, functional design and technical 
integration of the Intelligent Muscle Force Monitoring System, including the design of multimodal 
data collection modules (sEMG sensors, IMUs, plantar pressure sensors), data transmission and 
processing modules (5G transmission, cloud platform), and intelligent analysis and feedback 
modules (machine learning models, real-time feedback interface), ensuring that the system meets 
the requirements of real-time performance, lightweight design, and precision; third, construction of 
a personalized take-off point prediction model based on the system, determining the input features 
and output indicators of the model by analyzing the correlation between multimodal data and hurdle 
clearance efficiency, selecting suitable machine learning algorithms to realize the quantitative 
prediction of personalized optimal take-off points; fourth, analysis of the application value of the 
system in improving muscle force precision and competitive performance, expounding the 
empowering effect of the system on hurdle training from three dimensions (technical optimization, 
injury prevention, and athlete awareness improvement), and proposing paths for system promotion 
and optimization. 
 
1.4.2 Research Methods 
This study adopts interdisciplinary research methods to ensure scientificity and logic. First, the 
literature research method: by searching databases such as CNKI, Wanfang, Web of Science, and 
PubMed, collecting domestic and foreign literature on hurdle training, intelligent monitoring 
technology, sports biomechanics, and machine learning, sorting out the research status and 
theoretical basis, and clarifying the entry point and innovation of this study. Second, the theoretical 
analysis method: combining sports biomechanics theory to analyze the mechanical principles and 
muscle force mechanisms of the hurdle take-off phase, deriving the correlation logic between 
take-off point selection and muscle force parameters, and providing theoretical support for system 
design and model construction. Third, the technology design method: based on existing 
achievements in multimodal data collection technology and artificial intelligence technology, 
designing the hardware architecture and software functions of the Intelligent Muscle Force 
Monitoring System, and clarifying the technical parameters and collaborative logic of each module. 
Fourth, the logical reasoning method: by sorting out the logic of the system application process, 
analyzing the mechanism of the system in personalized take-off point selection and muscle force 
precision regulation, deriving the influence path of the system on competitive performance and 
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injury prevention, and forming a complete research logic chain. 
 
2 Technical Characteristics and Muscle Force Mechanisms of the Hurdle Take-off Phase 
2.1 Analysis of Technical Characteristics of the Hurdle Take-off Phase 
The complete technical process of hurdle events includes five phases: approach run, take-off, hurdle 
clearance, landing, and inter-hurdle run. Among them, the take-off phase, as the end of the approach 
run and the beginning of hurdle clearance, is the key to technical connection, and its technical 
quality directly determines the fluency and efficiency of subsequent hurdle clearance movements. 
From the perspective of technical structure, the take-off phase can be divided into three sub-links: 
take-off preparation, ground reaction force application, and take-off for hurdle clearance, each with 
clear technical requirements and characteristics. 
 
The take-off preparation link starts from the last two steps of the approach run. At this stage, 
athletes need to adjust their step frequency and stride length to store kinetic energy for take-off 
ground reaction force. During this link, athletes’ center of gravity should remain stable and slightly 
forward-leaning, with the trunk forming a certain angle with the ground, and the swing amplitude of 
the arms increasing to maintain body balance and accumulate force for ground reaction force 
application. The stride length of the last step of the approach run is usually slightly shorter than that 
of the previous step, aiming to shorten the support time, increase the ground reaction force speed, 
and ensure that the take-off leg lands accurately on the predetermined take-off point—the distance 
between the take-off point and the hurdle should adapt to the athlete’s lower limb length and 
approach speed. An excessively long distance will lead to insufficient ground reaction force 
application, while an excessively short distance will easily cause the "hurdle jumping" phenomenon, 
increasing the difficulty of hurdle clearance and injury risks. 
 
The ground reaction force application link is the core of the take-off phase and the stage where 
muscle force is most concentrated. After the take-off leg lands on the ground, athletes need to 
quickly transfer their center of gravity to the take-off leg and simultaneously activate the 
coordinated force of the take-off leg and swing leg—the quadriceps femoris, hamstrings, 
gastrocnemius, and other muscle groups of the take-off leg contract rapidly, generating a resultant 
force that is vertically upward and horizontally forward to push the body off the ground; the swing 
leg swings rapidly forward and upward under the action of the iliopsoas, biceps femoris, and tibialis 
anterior, with the knee lifted to a height similar to the hurdle to prepare for hurdle clearance. During 
this link, the timing and intensity of muscle force need to be precisely controlled: the ground 
reaction force application of the take-off leg should be synchronized with the swing movement of 
the swing leg to avoid force delay or premature force application, which would disrupt body 
balance; at the same time, the intensity of ground reaction force application should match the 
approach speed—excessive intensity will easily lead to excessive muscle load, while insufficient 
intensity cannot provide enough kinetic energy to support hurdle clearance. 
 
The take-off for hurdle clearance link is the end of the take-off phase. At this point, the athlete’s 
body is completely off the ground and enters the hurdle clearance phase. At the moment of take-off, 
the take-off leg should remain in an extended state until the knee joint is fully extended to maximize 
the use of ground reaction force kinetic energy; the swing leg should continue to swing forward, 
with the sole of the foot remaining relaxed when passing over the hurdle to avoid excessive muscle 
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tension leading to increased hurdle clearance height or reduced speed. At the same time, the trunk 
should maintain a moderate forward lean, and the arms should swing in coordination with the leg 
movements to maintain body balance in the air and prepare for landing buffer in the landing phase. 
From the perspective of technical characteristics, the quality of the take-off for hurdle clearance link 
depends on the technical completion of the previous two links—only with reasonable take-off point 
selection and precise muscle force can the body achieve stable take-off and efficient hurdle 
clearance; otherwise, problems such as rigid hurdle clearance movements and unstable landing will 
easily occur. 
 
2.2 Muscle Force Mechanisms of the Hurdle Take-off Phase 
Muscle force during the hurdle take-off phase is a complex process of coordinated work of multiple 
muscle groups. Different muscle groups perform different functions in different links, and their 
force timing, intensity, and coordination mode jointly determine the quality of take-off technology. 
According to the location and functional differences of muscle groups, the key muscle groups in the 
take-off phase can be divided into three categories: take-off leg muscle groups, swing leg muscle 
groups, and core muscle groups. The coordinated force of these three categories of muscle groups 
constitutes the muscle force mechanism of the take-off phase. 
 
As the main force source of the take-off phase, the take-off leg muscle groups are responsible for 
supporting the body and generating ground reaction force kinetic energy, mainly including the 
quadriceps femoris, hamstrings, gastrocnemius, and tibialis anterior. The quadriceps femoris, 
located on the front of the thigh, is the main muscle group for ground reaction force application of 
the take-off leg. During the ground reaction force preparation phase, the quadriceps femoris is in a 
pre-tensioned state to store elastic potential energy; during the ground reaction force application 
phase, the quadriceps femoris contracts concentrically rapidly to promote knee joint extension, 
generating vertically upward force and simultaneously coordinating with hip flexors to provide 
forward kinetic energy for the body. The hamstrings, located on the back of the thigh, form an 
antagonistic relationship with the quadriceps femoris. During the take-off preparation phase, the 
hamstrings relax moderately to cooperate with the pre-tension of the quadriceps femoris; during the 
ground reaction force application phase, the hamstrings first contract eccentrically to control the 
speed of knee joint extension, avoiding injury caused by excessive extension, and then switch to 
concentric contraction to assist the quadriceps femoris in completing the ground reaction force 
application action while maintaining the balance of the muscles on the back of the thigh. The 
gastrocnemius, located on the back of the lower leg, contracts rapidly at the moment of take-off, 
promoting ankle plantar flexion, further enhancing ground reaction force intensity, extending the 
ground reaction force time, and providing additional upward kinetic energy for the body. The 
tibialis anterior, located on the front of the lower leg, mainly functions to control the landing angle 
of the sole of the foot during the take-off preparation phase, avoiding excessive inversion or 
eversion of the sole of the foot, maintaining the support stability of the take-off leg, and assisting in 
ankle movement during the ground reaction force application phase to ensure the precision of the 
force direction. 
 
The main function of the swing leg muscle groups is to provide forward inertia for the body through 
rapid swinging and maintain body balance in the air, mainly including the iliopsoas, biceps femoris, 
rectus femoris, and tibialis anterior. The iliopsoas, located inside the hip joint, is the main power 
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source for lifting the swing leg. During the take-off preparation phase, the iliopsoas contracts slowly 
to accumulate force for the swing movement; during the ground reaction force application phase, 
the iliopsoas contracts concentrically rapidly, pulling the swing leg hip joint to flex, so that the knee 
is quickly lifted to the predetermined height to prepare for hurdle clearance. The biceps femoris, 
located on the back of the thigh, contracts eccentrically moderately during the swing movement of 
the swing leg to control the swing speed of the swing leg, avoiding body imbalance caused by 
excessive swing speed, and simultaneously coordinates with the iliopsoas to adjust the swing angle 
of the swing leg to ensure that the sole of the foot can pass over the hurdle smoothly. As part of the 
quadriceps femoris, the rectus femoris participates in hip joint flexion during the swing phase of the 
swing leg, assisting the iliopsoas in lifting the knee, and at the same time maintaining the tension of 
the muscles on the front of the thigh to avoid muscle relaxation caused by the swing movement. The 
tibialis anterior contracts during the swing phase of the swing leg to cause ankle dorsiflexion, 
keeping the sole of the foot in a neutral position and avoiding the sole of the foot drooping and 
touching the hurdle, ensuring the fluency of the hurdle clearance movement. 
 
Although the core muscle groups do not directly participate in the ground reaction force application 
or swing movement of the take-off phase, they play a key role in maintaining body balance and 
transmitting force kinetic energy, mainly including the rectus abdominis, external oblique muscles, 
erector spinae, and gluteus maximus. The rectus abdominis and external oblique muscles, located in 
the abdomen, maintain trunk stability through contraction during the take-off phase, avoiding 
excessive forward or backward leaning of the trunk caused by leg force; at the same time, the 
contraction of the abdominal muscles can transmit the kinetic energy generated by the lower limbs 
upward to provide support for arm swinging, enhancing the coordination of overall force. The 
erector spinae, located on both sides of the spine, functions to maintain the physiological curvature 
of the spine. During the take-off phase, the erector spinae is moderately tense to avoid spinal 
curvature caused by the transfer of the center of gravity, protecting the spine from injury and 
simultaneously coordinating with the abdominal muscles to maintain the vertical stability of the 
trunk. The gluteus maximus, located in the buttocks, contracts to maintain the stability of the hip 
joint during the take-off preparation phase, avoiding excessive extension of the hip joint; during the 
ground reaction force application phase, the gluteus maximus coordinates with the quadriceps 
femoris of the take-off leg to enhance the intensity of ground reaction force application, and adjusts 
the pelvic position through contraction to ensure the reasonable distribution of the body’s center of 
gravity. 
 
2.3 Correlation Logic Between Take-off Point Selection and Muscle Force 
There is a close dynamic correlation between take-off point selection and muscle force. A 
reasonable take-off point can create optimal biomechanical conditions for muscle force, while 
precise muscle force is the basis for realizing take-off point adaptation. The two influence and 
restrict each other, jointly determining the technical quality of the take-off phase. 
From a biomechanical perspective, the position of the take-off point directly affects the angle, 
moment, and efficiency of muscle force. When the distance between the take-off point and the 
hurdle is excessively long, athletes need to increase the ground reaction force angle of the take-off 
leg (i.e., the extension angle of the knee and hip joints) to complete hurdle clearance, which will 
cause the quadriceps femoris and hamstrings of the take-off leg to be in an overextended state. The 
initial length of muscle contraction exceeds the optimal range, thereby reducing the efficiency of 
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muscle force—according to the length-tension relationship principle of muscle contraction, muscles 
can only generate maximum tension at a moderate initial length; both overextension and 
overshortening will lead to a decrease in tension. At the same time, an excessively long take-off 
point will also increase the swing distance of the swing leg, causing the iliopsoas and biceps 
femoris of the swing leg to bear a greater load, which easily leads to muscle fatigue or force delay, 
disrupting the coordinated force rhythm of the take-off leg and swing leg. 
 
An excessively short take-off point will lead to another type of biomechanical imbalance: at this 
time, the ground reaction force angle of the take-off leg is too small, the extension range of the knee 
and hip joints is insufficient, the vertically upward component of the muscle force is reduced, and 
the horizontally forward component is too large, which easily causes the body to take off 
prematurely, resulting in the "hurdle jumping" phenomenon—the trajectory of the body in the air is 
too high, which not only increases the hurdle clearance time but also increases the impact force 
during landing, increasing the risk of injuries to the knee and ankle joints. At the same time, an 
excessively short take-off point will limit the swing space of the swing leg, making it impossible for 
the iliopsoas to contract fully, resulting in insufficient lifting height of the swing leg, which easily 
causes the sole of the foot to touch the hurdle, affecting the fluency of hurdle clearance. 
 
On the contrary, a reasonable take-off point can put the muscles in an optimal force state: the 
quadriceps femoris and hamstrings of the take-off leg are at a moderate initial length, which can 
generate maximum tension during contraction; the ratio of the vertically upward and horizontally 
forward components of the ground reaction force is balanced, which can not only provide sufficient 
kinetic energy to support hurdle clearance but also maintain the stability of the body’s center of 
gravity; the swing distance and angle of the swing leg are moderate, the force load of the iliopsoas 
and biceps femoris is within a reasonable range, and rapid and stable swinging can be achieved to 
form coordination with the ground reaction force of the take-off leg. This state of "take-off point 
adapting to muscle force" is the key to improving hurdle clearance efficiency and reducing injury 
risks. 
 
At the same time, the precision of muscle force also affects the stability of take-off point selection. 
Even if the coach sets a reasonable take-off point range based on experience, if the athlete’s muscle 
force deviates during training (e.g., premature or delayed ground reaction force application of the 
take-off leg, unstable swing speed of the swing leg), the actual take-off point will deviate from the 
predetermined range—for example, delayed activation of the quadriceps femoris of the take-off leg 
will delay the ground reaction force application time, making the athlete’s actual take-off point 
closer to the hurdle than the predetermined position; excessive force of the iliopsoas of the swing 
leg will increase the swing speed, making the actual take-off point farther from the hurdle than the 
predetermined position. This phenomenon of "muscle force deviation leading to take-off point 
deviation" further indicates that take-off point selection and muscle force are a dynamic balance 
process. It is impossible to optimize take-off technology by only relying on experience to set 
take-off points or only focusing on muscle force while ignoring take-off point adaptation. 
 
3 Design and Construction of the Intelligent Muscle Force Monitoring System 
3.1 Core Principles of System Design 
The design of the Intelligent Muscle Force Monitoring System should be guided by the actual needs 
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of hurdle take-off training, combined with the characteristics of multimodal data collection 
technology and artificial intelligence technology, and follow four core principles: real-time 
performance, precision, lightweight design, and personalization. These principles ensure that the 
system can provide high-quality monitoring and feedback services for training without interfering 
with athletes’ training. 
 
The real-time performance principle is the primary requirement for system design, with its core 
being to ensure the timeliness of data collection, transmission, analysis, and feedback. In hurdle 
take-off training, the technical movement of athletes is completed in a short time (the take-off phase 
only lasts 0.3-0.5 seconds). Coaches and athletes need to obtain force deviation and take-off point 
information in a timely manner to quickly adjust technical movements in subsequent training. 
Therefore, the system’s data collection module should have a high sampling frequency to capture 
the dynamic changes of muscle force and kinematic parameters; the data transmission module 
should adopt high-speed transmission technology to reduce data latency; the data analysis module 
should be equipped with efficient algorithms to quickly complete data processing and 
decision-making output; the feedback module should transmit information to coaches and athletes 
in an intuitive form (e.g., real-time pop-ups, sound and light prompts), ensuring that the feedback 
time interval is controlled within 1 second to meet the real-time adjustment needs of training. 
 
The precision principle is the basis for ensuring the system’s monitoring effect, covering the 
accuracy of data collection and the reliability of analysis results. The accuracy of data collection 
requires sensors to accurately capture key parameters—the surface electromyography sensor should 
accurately record muscle activation timing and root mean square (RMS) amplitude, with errors 
controlled within an acceptable range; the inertial measurement unit should accurately measure joint 
angles and angular velocities, avoiding data deviations caused by device vibration or external 
interference; the plantar pressure sensor should accurately obtain the pressure distribution and peaks 
of ground reaction force, ensuring that the data can truly reflect the force intensity. The reliability of 
analysis results requires the machine learning model to have a high prediction accuracy, which can 
accurately identify take-off point deviations and muscle force problems based on multimodal data, 
avoiding incorrect feedback information caused by algorithm errors that affect training effects or 
even increase injury risks. To achieve precision, the system should select high-precision sensors in 
hardware selection, optimize model parameters through a large amount of data training in software 
algorithms, and establish a data calibration mechanism to regularly calibrate sensors and models. 
 
The lightweight design principle aims to reduce the system’s interference with athletes’ training and 
ensure that the device can adapt to actual training scenarios. Hurdle events have high requirements 
for athletes’ movement flexibility. If the system equipment is too large, heavy, or cumbersome to 
wear, it will limit the range and speed of athletes’ movements, affecting the authenticity of training. 
Therefore, the hardware design of the system should pursue miniaturization and 
lightweight—sensors should select products with small size and light weight, such as patch-type 
surface electromyography sensors and micro inertial measurement units; the fixing method of 
sensors should be convenient and firm, using breathable and elastic straps or stickers to avoid 
irritation to the skin or falling off during movement; the data transmission module should be 
integrated to reduce the number of wires and avoid wire entanglement affecting movements. At the 
same time, the software operation of the system should be simple and easy to understand, so that 



60 
 

coaches and athletes can master the basic usage methods without complex training, ensuring that 
the system can be quickly integrated into the daily training process. 
 
The personalization principle is the key to the system adapting to elite hurdle training, emphasizing 
that the system can provide customized services according to the individual differences of each 
athlete. Elite hurdle athletes vary significantly in physiological characteristics (e.g., height, weight, 
lower limb length), technical characteristics (e.g., approach speed, step frequency), and training 
needs (e.g., improving hurdle clearance speed, correcting force deviations). A unified monitoring 
standard and feedback mode cannot meet individual needs. Therefore, the system should have 
personalized data collection dimensions—adjusting the attachment position and collection focus of 
sensors according to the athlete’s technical weaknesses; personalized model parameters—training 
an exclusive optimal take-off point prediction model based on each athlete’s basic data; 
personalized feedback content—outputting targeted correction suggestions for the athlete’s specific 
problems, such as some athletes needing to focus on adjusting the ground reaction force time of the 
take-off leg, and others needing to optimize the swing angle of the swing leg. Through personalized 
design, the system can truly realize "one-on-one" refined training support. 
 
3.2 Hardware Architecture Design of the System 
The hardware architecture of the Intelligent Muscle Force Monitoring System adopts a "distributed 
collection - centralized processing" mode, consisting of four parts: a multimodal data collection 
module, a data transmission module, a cloud processing module, and a terminal feedback module. 
Each module works collaboratively to realize the complete process from data capture to information 
output. 
 
The multimodal data collection module is the "perceptual organ" of the system, responsible for 
real-time capture of muscle force and kinematic parameters of the hurdle take-off phase. Its core 
includes a surface electromyography (sEMG) sensor sub-module, an inertial measurement unit 
(IMU) sub-module, and a plantar pressure sensor sub-module. The surface electromyography sensor 
sub-module is used to collect the electrophysiological signals of key muscle groups to reflect the 
muscle activation state—according to the muscle force mechanism of the hurdle take-off phase, the 
sensors should be attached to 6 groups of muscle groups: the quadriceps femoris (lateral head), 
hamstrings (biceps femoris), and gastrocnemius (medial head) of the take-off leg, and the iliopsoas 
(inguinal region), biceps femoris (lateral head), and tibialis anterior (middle front of the lower leg) 
of the swing leg; the sensors adopt a patch-type design, with a thickness of less than 1mm and a 
weight of less than 5g, and a sampling frequency set to 1000Hz, which can accurately capture the 
timing changes and RMS values of muscle activation, and has anti-interference functions to reduce 
the impact of sweat and skin friction on signals during movement. 
 
The inertial measurement unit (IMU) sub-module is used to collect athletes’ kinematic parameters, 
including joint angles, angular velocities, and accelerations, to reflect the state of body 
movements—the IMU adopts a miniaturized design, with a volume of approximately 
1cm×1cm×0.5cm and a weight of less than 3g, and is fixed to 5 positions of the athlete’s body via 
elastic straps: the waist (L3-L4 vertebral region), the lateral side of the take-off leg’s knee joint, the 
lateral side of the take-off leg’s ankle joint, the lateral side of the swing leg’s knee joint, and the 
lateral side of the swing leg’s ankle joint; the sampling frequency of the IMU is set to 200Hz, which 
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can real-time record the tilt angle of the trunk, the extension/flexion angles and angular velocities of 
the knee and ankle joints during the take-off phase, providing data support for analyzing body 
balance and movement coordination; at the same time, the IMU has a built-in temperature 
compensation function to avoid measurement errors caused by temperature changes in the training 
environment. 
 
The plantar pressure sensor sub-module is used to collect the plantar pressure distribution and peaks 
at the moment of take-off ground reaction force, reflecting the intensity and symmetry of ground 
reaction force—the sensor adopts a flexible film design, with a thickness of less than 0.5mm and a 
weight of less than 10g, which can be directly embedded in the insole of the athlete’s training shoes, 
covering the forefoot, midfoot, and hindfoot regions of the sole; the sampling frequency of the 
sensor is set to 500Hz, which can capture the pressure change curve at the moment of ground 
reaction force, and calculate parameters such as pressure peaks, pressure center trajectory, and 
pressure distribution uniformity; the sensor has high sensitivity, with a pressure measurement range 
of 0-2000kPa, which can accurately reflect ground reaction force of different intensities. 
 
The data transmission module is the "nerve center" of the system, responsible for real-time 
transmission of data captured by the multimodal data collection module to the cloud processing 
module. Its core adopts a combination of 5G wireless transmission technology and edge computing 
nodes. Since hurdle training is mostly conducted outdoors or in large venues, wired transmission 
has limitations. The 5G technology has the characteristics of high bandwidth (peak rate up to 
10Gbps), low latency (end-to-end latency ≤ 100ms), and wide coverage, which can meet the needs 
of simultaneous data transmission from multiple sensors and is not limited by the training venue. A 
miniaturized edge computing node (with a volume of approximately 5cm×3cm×2cm and a weight 
of less than 50g) is equipped on each athlete. This node is connected to each sensor via Bluetooth 
Low Energy (BLE) technology, receives data collected by the sensors, and performs preliminary 
preprocessing (such as data filtering and format conversion) to reduce the amount of original data 
transmission; subsequently, the edge computing node uploads the preprocessed data to the cloud 
processing module via the 5G module, and also has a data caching function. In case of temporary 
5G signal interruption, data can be temporarily stored and uploaded continuously after the signal is 
restored to ensure no data loss. 
 
The cloud processing module is the "brain" of the system, responsible for in-depth analysis and 
intelligent decision-making of the transmitted data, and consists of a server cluster and an algorithm 
model library. The server cluster adopts a distributed architecture, with high-performance data 
processing capabilities, which can simultaneously receive training data from multiple athletes and 
perform parallel processing; the server is equipped with large-capacity storage devices, which can 
store athletes’ training data for a long time, providing data support for subsequent training progress 
analysis and model optimization. The algorithm model library is the core of the cloud processing 
module, including data preprocessing algorithms, feature extraction algorithms, machine learning 
prediction models, and result generation algorithms—the data preprocessing algorithms are used to 
further clean the data (such as removing noise and filling missing values) to ensure data quality; the 
feature extraction algorithms are used to extract key features from multimodal data (such as the 
RMS value of sEMG, the peak angular velocity of joints from IMU, and the peak time of plantar 
pressure); the machine learning prediction models (such as random forest, neural network) predict 
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the optimal take-off point of each athlete based on the extracted features and identify muscle force 
deviations; the result generation algorithms convert the model output results into intuitive analysis 
reports and feedback suggestions, such as take-off point deviation values, muscle activation delay 
time, and force correction directions. 
 
The terminal feedback module is the "output interface" of the system, responsible for transmitting 
the analysis results and feedback suggestions generated by the cloud processing module to coaches 
and athletes, including two sub-modules: the coach terminal and the athlete terminal. The coach 
terminal uses a tablet computer or laptop as the terminal device, and receives the analysis report 
sent by the cloud via dedicated software. The report content includes the athlete’s take-off point 
selection deviation, the change trend of muscle force parameters, and the evaluation of training 
effects. Coaches can view real-time data and historical data comparisons via the software to 
formulate or adjust training plans; at the same time, the coach terminal software has a data 
visualization function, displaying data in the form of charts (such as line charts, heat maps) to 
facilitate coaches to quickly understand the athlete’s technical problems. The athlete terminal uses a 
smart watch or bracelet as the terminal device, which is small in size and convenient to wear, and 
can receive concise feedback information sent by the cloud in real-time, such as take-off point 
deviation prompts ("The current take-off point is too close, please move back 5cm") and muscle 
force correction prompts ("Hamstring activation is delayed, please apply force 0.2s earlier"). The 
feedback information is presented in text or sound and light form to ensure that athletes can obtain 
adjustment suggestions in a timely manner during training breaks. 
 
3.3 Software Function Design of the System 
The software functions of the Intelligent Muscle Force Monitoring System revolve around the entire 
process of "data collection - analysis - feedback - management", and are divided into four modules: 
data collection software, cloud analysis software, terminal feedback software, and system 
management software. The functions of each module are connected to form a complete software 
ecosystem. 
 
The data collection software is the control core of the hardware module, with main functions 
including sensor management, real-time data collection, and preprocessing, running on the edge 
computing node and locally on the sensors. The sensor management function allows users to 
configure sensor parameters (such as sampling frequency, signal gain, and transmission mode) via 
the software interface, and can detect the connection status and battery level of the sensors. If a 
sensor is disconnected or the battery level is low, the software will issue an alarm prompt in a 
timely manner to ensure the continuity of the collection process; for surface electromyography 
sensors, the software also has a skin impedance detection function to help users confirm whether the 
sensors are attached properly, avoiding data deviations caused by poor contact. The real-time data 
collection function can simultaneously receive data from 6 groups of sEMG sensors, 5 IMUs, and 1 
group of plantar pressure sensors, and uses time stamp synchronization technology to ensure that 
data from different types of sensors are consistent in the time dimension, with an error controlled 
within 1ms; the collected data are displayed in real-time on the software interface in the form of 
data streams, allowing users to intuitively view data waveforms and judge data quality. The data 
preprocessing function performs preliminary processing on the collected data locally, including 
signal filtering (using a Butterworth filter to remove 50Hz power frequency interference and motion 
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artifacts), data dimensionality reduction (extracting feature parameters such as the RMS value of 
sEMG and the mean value of IMU angles and angular velocities), and data format conversion 
(converting raw data into JSON format recognizable by the cloud analysis software), reducing the 
amount of data transmission and improving the efficiency of subsequent analysis. 
 
The cloud analysis software is the intelligent core of the system, undertaking the functions of 
in-depth data analysis and intelligent decision-making, and running on the cloud server cluster. The 
data receiving and storage function is responsible for receiving preprocessed data from the edge 
computing node, storing the data using a distributed database (such as Hadoop HDFS), supporting 
long-term storage and fast retrieval of massive data; at the same time, the software establishes an 
exclusive database for each athlete, recording their multimodal data from each training session to 
form a complete training data file. The feature extraction function further extracts more 
representative feature parameters based on the preprocessed data—for sEMG data, extracting 
parameters such as muscle activation latency, peak RMS value, and activation duration; for IMU 
data, extracting parameters such as peak joint angle, peak angular velocity, and angle change rate; 
for plantar pressure data, extracting parameters such as pressure peak, pressure center offset, and 
pressure distribution uniformity; these feature parameters serve as inputs to the machine learning 
model for subsequent analysis and prediction. 
 
The machine learning analysis function is the core of the cloud analysis software, including an 
optimal take-off point prediction model and a muscle force deviation identification model. The 
optimal take-off point prediction model adopts the random forest algorithm, with the athlete’s basic 
physiological parameters (height, weight, lower limb length), feature parameters during training 
(such as approach speed, knee joint angular velocity of the take-off leg, and plantar pressure peak), 
and historical hurdle clearance efficiency data (hurdle clearance time, referee score) as input 
features, and "optimal take-off point position" as the output label. The model optimizes parameters 
through a large amount of training data to realize accurate prediction of the personalized optimal 
take-off point for each athlete; the model has a dynamic update function, and will retrain the model 
regularly as the athlete’s training data accumulates to ensure that the prediction results always adapt 
to the athlete’s latest state. The muscle force deviation identification model adopts the support 
vector machine (SVM) algorithm, which compares real-time collected feature parameters with 
feature parameters in the normal force state to identify the type (such as activation delay, 
insufficient force, coordination imbalance) and degree of muscle force deviation, and analyzes the 
possible causes of deviation (such as muscle fatigue, irregular technical movements) to provide a 
basis for subsequent feedback suggestions. 
 
The result generation function converts the analysis results of the machine learning model into 
intuitive and operable feedback content, including a take-off point analysis report, a muscle force 
evaluation report, and a training suggestion report. The take-off point analysis report displays the 
deviation value and direction between the current take-off point and the optimal take-off point, as 
well as adjustment suggestions; the muscle force evaluation report evaluates the precision of muscle 
force in the form of a score (100-point scale), focusing on analyzing the force parameters of key 
muscle groups and pointing out existing deviations; the training suggestion report proposes specific 
training adjustment plans based on the deviation analysis results, such as suggesting additional 
targeted explosive training for hamstring activation delay, and suggesting adjusting the landing 
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angle of the sole of the foot during take-off for uneven plantar pressure distribution. 
 
The terminal feedback software is responsible for transmitting the results generated by the cloud 
analysis software to users, divided into the coach terminal and the athlete terminal, with functional 
designs focusing on different priorities. The coach terminal software runs on a tablet computer or 
laptop, with data visualization, multi-athlete management, and training plan formulation functions. 
The data visualization function displays the athlete’s real-time and historical data in the form of 
charts, such as a trend chart of take-off point deviation changes, a comparison chart of muscle force 
parameters, and a curve chart of hurdle clearance efficiency improvement, helping coaches quickly 
grasp the athlete’s training progress and technical problems; the multi-athlete management function 
allows coaches to monitor training data of multiple athletes simultaneously, switching between the 
analysis results of different athletes via the software interface to facilitate the overall management 
of team training; the training plan formulation function provides coaches with training plan 
templates based on the athlete’s evaluation report, allowing coaches to adjust the training content, 
intensity, and frequency according to actual needs, and synchronize the plan to the athlete terminal 
software to realize accurate transmission of training guidance. 
 
The athlete terminal software runs on a smart watch or bracelet, with functions designed to be 
concise and real-time, including real-time feedback, training records, and a personal center. The 
real-time feedback function transmits brief adjustment suggestions to athletes in text or sound and 
light form during training, such as "The take-off point is too close, move back 5cm" and "Hamstring 
force is delayed, speed up ground reaction force", ensuring that athletes can adjust in a timely 
manner during training; the training record function automatically saves the evaluation report and 
feedback suggestions of each training session, allowing athletes to view them after training to 
review their technical problems and progress; the personal center function displays the athlete’s 
basic information, total training duration, hurdle clearance efficiency score, and other data, helping 
athletes establish training goals and enhance training initiative. 
 
The system management software is used to ensure the stable operation and security of the entire 
system, with main functions including user management, permission control, data security, and 
system maintenance. The user management function allows administrators to create user accounts 
for different roles such as coaches, athletes, and system maintenance personnel, and set the validity 
period and login password of the accounts; the permission control function assigns different 
operation permissions to different roles, such as coaches can view and manage the data of their 
affiliated athletes, athletes can only view their own data, and system maintenance personnel can 
perform sensor calibration and software updates, avoiding data leakage or incorrect operations; the 
data security function uses encryption technology (such as AES-256 encryption) to protect 
transmitted and stored data, preventing data from being stolen or tampered with, and at the same 
time establishes a data backup mechanism to regularly back up the database to ensure data security; 
the system maintenance function allows administrators to remotely monitor the operation status of 
each module of the system, such as sensor connection status, server load, and network transmission 
speed. If an abnormality is found, remote repair can be performed in a timely manner or a 
maintenance prompt can be issued to ensure the stable operation of the system. 
 
4 Application Mechanism of the Intelligent Muscle Force Monitoring System in Hurdle 
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Training 
4.1 Application Mechanism of the System in Personalized Take-off Point Selection 
The application of the Intelligent Muscle Force Monitoring System in personalized take-off point 
selection follows a closed-loop mechanism of "data collection - model prediction - real-time 
adjustment - dynamic optimization". Through in-depth integration and intelligent analysis of 
multi-dimensional data, it realizes the transformation of take-off point selection from 
"experience-based judgment" to "quantitative adaptation", ensuring that each elite hurdle athlete can 
obtain the most suitable take-off point position for themselves. 
 
In the data collection and basic modeling phase, the system first comprehensively captures the 
athlete’s individual basic data and initial training data through the multimodal data collection 
module, providing basic support for the personalized take-off point prediction model. The 
individual basic data includes the athlete’s physiological parameters (height, weight, lower limb 
length, flexibility, lower limb strength distribution) and technical parameters (approach speed, step 
frequency, stride characteristics), which are obtained through special tests in the early stage—such 
as measuring physiological parameters via physical testing equipment and analyzing approach 
technical parameters via high-speed photography and motion capture technology; the initial training 
data refers to the multimodal data of the athlete completing take-off training under traditional coach 
guidance without accessing system feedback, including muscle activation parameters recorded by 
sEMG, kinematic parameters recorded by IMU, ground reaction force parameters recorded by 
plantar pressure sensors, and the coach’s score of hurdle clearance efficiency. The system uploads 
these data to the cloud analysis software, extracts key features (such as the stride length of the last 
step of the approach run, the maximum extension angle of the take-off leg’s knee joint, and the 
occurrence time of the plantar pressure peak) via the feature extraction algorithm, and then 
correlates these features with the hurdle clearance efficiency score to train the initial optimal 
take-off point prediction model. The core goal of this phase is to establish the correlation logic of 
"individual data - hurdle clearance efficiency - take-off point" and lay the foundation for subsequent 
personalized prediction. 
 
In the real-time prediction and feedback phase, the system enters normalized training application, 
providing dynamic take-off point suggestions for athletes through real-time data collection and 
model calculation. When the athlete conducts take-off training, the multimodal data collection 
module captures real-time multimodal data during training, and the edge computing node performs 
preliminary preprocessing on the data before quickly transmitting it to the cloud analysis software; 
the cloud software first compares the real-time data with the athlete’s basic data to determine 
whether there is an abnormality in the current training state (such as whether the approach speed 
decreases due to fatigue). If an abnormality exists, the model parameters are temporarily adjusted to 
ensure the adaptability of the prediction results; subsequently, the software inputs the real-time 
extracted feature parameters into the optimal take-off point prediction model, calculates the 
personalized optimal take-off point position under the current state, and compares it with the 
athlete’s actual take-off point position (jointly positioned via IMU and plantar pressure data) to 
obtain the deviation value and direction. The system transmits this result to coaches and athletes in 
real-time via the terminal feedback module—the coach terminal software displays a detailed 
deviation analysis, such as "The current take-off point is 8cm closer than the optimal position, 
which may lead to insufficient hurdle clearance height"; the athlete terminal device provides a 
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concise prompt, such as "The take-off point is too close, please move back 8cm", helping the athlete 
adjust the approach rhythm and optimize take-off point selection in subsequent training. The core of 
this phase is to realize real-time quantitative feedback of take-off point selection and help athletes 
quickly correct deviations. 
 
In the dynamic optimization and iteration phase, the system continuously improves the accuracy of 
personalized take-off point prediction through long-term data accumulation and model updates, 
ensuring that the take-off point selection always adapts to the athlete’s technical progress and state 
changes. As training continues, the system automatically stores the real-time data, prediction results, 
and actual hurdle clearance efficiency data of each training session, forming a large personal 
training database. The cloud analysis software regularly (e.g., weekly) conducts review and analysis 
of these data to evaluate the accuracy of the prediction model—if a deviation is found between the 
model-predicted optimal take-off point and the actual take-off point that produces the best hurdle 
clearance efficiency, the model is retrained via machine learning algorithms to adjust feature 
weights and model parameters, such as increasing the weight of recent muscle force parameters and 
reducing the influence of early basic data; at the same time, the system also analyzes the influence 
of the athlete’s technical progress on the take-off point, such as automatically adjusting the range of 
the optimal take-off point when the athlete’s approach speed increases to ensure that the take-off 
point adapts to the new approach speed. In addition, when the athlete encounters special situations 
(such as post-injury rehabilitation, technical movement improvement), the system triggers an 
emergency model update, quickly adjusting the prediction model by supplementing the collection of 
special test data to avoid inaccurate take-off point suggestions caused by model lag. The core of this 
phase is to realize dynamic adaptation of take-off point prediction and ensure the long-term 
effectiveness of personalized suggestions. 
 
4.2 Application Mechanism of the System in Improving Muscle Force Precision 
The Intelligent Muscle Force Monitoring System helps elite hurdle athletes improve muscle force 
precision during the take-off phase from three dimensions (muscle activation timing, force intensity, 
and muscle group coordination) through a progressive mechanism of "real-time monitoring - 
deviation identification - precise feedback - training reinforcement", realizing the transformation 
from "ambiguous force" to "controllable force". 
 
In terms of muscle activation timing regulation, the system accurately captures the time nodes of 
muscle activation, identifies problems of activation delay or premature activation, and provides 
targeted feedback and training suggestions. Muscle activation timing is the key to determining the 
quality of take-off technology—the activation of the quadriceps femoris of the take-off leg needs to 
be synchronized with the activation of the iliopsoas of the swing leg. If the quadriceps femoris is 
activated delayed, it will lead to delayed ground reaction force application and affect take-off speed; 
if the iliopsoas is activated prematurely, it will cause the swing leg to lift too early and disrupt body 
balance. The system’s surface electromyography sensors record the activation signals of 6 groups of 
key muscle groups in real-time, and the cloud analysis software calculates the activation latency 
(the time from the landing of the last step of the approach run to the start of muscle activation) and 
activation duration of each group of muscle groups via the feature extraction algorithm, and 
compares them with the athlete’s "optimal activation timing template" (established based on 
historical best training data) to identify timing deviations. For example, if the analysis finds that the 
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activation latency of the hamstrings of the take-off leg is 0.2s later than the optimal template, the 
system transmits this deviation information to coaches and athletes—the coach terminal software 
displays a change curve of hamstring activation timing to help coaches analyze the cause of the 
deviation (such as whether the reaction speed decreases due to muscle fatigue); the athlete terminal 
device provides a real-time prompt of "Hamstring activation is delayed, please speed up the ground 
reaction force response". At the same time, the system recommends a targeted timing training plan 
based on the type of deviation, such as adopting the "sound-controlled trigger" training method, 
allowing athletes to activate hamstring force according to specific sound signals, and shortening the 
activation latency through repeated training to optimize activation timing. 
 
In terms of force intensity regulation, the system quantifies the intensity parameters of muscle force, 
identifies problems of insufficient or excessive force, and helps athletes adjust force intensity to 
realize "on-demand force application". Different take-off phases have different requirements for 
muscle force intensity—during the take-off preparation phase, moderate force accumulation is 
required, and the force intensity should not be too large to avoid premature energy consumption; 
during the ground reaction force application phase, full force is required to generate sufficient 
kinetic energy to support hurdle clearance; during the take-off for hurdle clearance phase, moderate 
relaxation is required to avoid muscle tension affecting movement fluency. The system quantifies 
muscle force intensity in real-time via the RMS value of surface electromyography sensors 
(reflecting muscle force intensity) and the pressure peak of plantar pressure sensors (reflecting 
ground reaction force intensity), and compares it with the "phased force intensity standard" 
(formulated based on sports biomechanics theory and individual best data) to identify intensity 
deviations. For example, if the analysis finds that the RMS value of the iliopsoas of the swing leg 
during the ground reaction force application phase is only 70% of the optimal standard, it indicates 
insufficient force, which will reduce the lifting speed of the swing leg and affect hurdle clearance 
efficiency; the system feeds this information back to the user and recommends an intensity training 
plan, such as adopting "resistance band-assisted swing" training to increase the resistance of the 
swing leg, enhance the force intensity of the iliopsoas, and simultaneously monitor changes in the 
RMS value in real-time via the system to ensure training effects. For cases of excessive force, such 
as when the RMS value of the quadriceps femoris of the take-off leg during the ground reaction 
force application phase exceeds 120% of the optimal standard, the system prompts "Excessive force 
of the quadriceps femoris, please reduce the force intensity to avoid excessive muscle load" and 
recommends relaxation training to help athletes adjust their force habits. 
 
In terms of muscle group coordination regulation, the system analyzes the force correlation 
parameters of multiple muscle groups, identifies coordination imbalance problems, and helps 
athletes optimize the cooperation between muscle groups to realize "coordinated force application". 
Muscle force during the hurdle take-off phase is the result of coordinated work of multiple muscle 
groups, and any deviation in the force of a single muscle group will affect the overall coordination 
effect—for example, excessive force of the quadriceps femoris of the take-off leg and insufficient 
force of the hamstrings will lead to excessive extension of the knee joint, increasing injury risks; 
coordination imbalance between the iliopsoas and biceps femoris of the swing leg will cause 
deviation in the swing angle of the swing leg, affecting the hurdle clearance trajectory. The system 
calculates the force parameter ratios between different muscle groups (such as the RMS ratio 
between the quadriceps femoris and hamstrings, and the activation time difference between the 
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iliopsoas and biceps femoris) via the cloud analysis software, and compares them with the "optimal 
coordination parameter range" to identify the type of coordination imbalance. For example, if the 
analysis finds that the RMS ratio between the quadriceps femoris and hamstrings of the take-off leg 
is 3:1, far exceeding the optimal range of 2:1, it indicates that the quadriceps femoris is relatively 
over-forceful and the hamstrings are insufficiently coordinated; the system generates a coordination 
imbalance analysis report, points out the problem, and recommends a coordination training plan, 
such as adopting "bilateral synchronized force" training, allowing athletes to focus on the force of 
both the quadriceps femoris and hamstrings during training, and adjusting the force intensity of the 
two muscle groups through the ratio changes fed back by the system in real-time to gradually 
reduce the ratio to the optimal range. At the same time, the system also analyzes the influence of 
muscle group coordination imbalance on kinematic parameters via IMU and plantar pressure data, 
such as whether it causes joint angle deviation or uneven plantar pressure distribution, helping 
coaches and athletes more comprehensively understand the hazards of coordination problems and 
enhance the targeting of training. 
 
4.3 Application Mechanism of the System in Injury Risk Prevention and Athlete Awareness 
Improvement 
4.3.1 Injury Risk Prevention Mechanism 
The take-off phase of hurdle races is a high-risk link for injuries, with common injuries including 
strains of the quadriceps femoris in the take-off leg, hamstring tears, and ankle sprains. These 
injuries are mostly caused by muscle force deviations (such as excessive load and compensatory 
force) and movement imbalances (such as abnormal joint angles and uneven plantar pressure 
distribution). The Intelligent Muscle Force Monitoring System realizes proactive prevention of 
injury risks through a "risk early warning - cause analysis - intervention suggestion" mechanism, 
eliminating injury risks in their infancy. 
 
In terms of risk early warning, the system establishes an "Injury Risk Assessment Model" to 
monitor key injury-related parameters in real time and identify potential risks in advance. Based on 
sports medicine and sports biomechanics theories, the Injury Risk Assessment Model selects 
parameters highly correlated with injuries as early warning indicators, including muscle force 
parameters (e.g., the number of times muscle activation intensity exceeds the individual tolerance 
threshold, the duration of muscle group coordination imbalance), kinematic parameters (e.g., the 
frequency of the knee joint’s maximum extension angle exceeding the safe range, the number of 
abnormal ankle inversion angles), and plantar pressure parameters (e.g., the time when the local 
plantar pressure peak exceeds the safety threshold, the pressure center offset). The system captures 
these parameters in real time through the multimodal data collection module, and the cloud analysis 
software inputs them into the assessment model to calculate the injury risk score (0-100 points, with 
higher scores indicating higher risks). Risk level thresholds are set (e.g., 0-30 points for low risk, 
31-70 points for medium risk, and 71-100 points for high risk). When the risk score reaches 
medium risk or above, the system immediately issues an early warning through the terminal 
feedback module: the coach-side software displays specific early warning indicators and risk levels, 
such as "The activation intensity of the quadriceps femoris in the take-off leg has exceeded the 
tolerance threshold 5 consecutive times, with a risk score of 75 points (high risk)"; the athlete-side 
device provides an audio-visual alarm prompt, such as "Excessive load on the quadriceps femoris, it 
is recommended to pause training and relax", ensuring the timely termination of high-risk training 
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behaviors. 
 
In terms of cause analysis, while issuing a risk early warning, the system conducts an in-depth 
analysis of the root causes of the risk to provide a basis for subsequent interventions. The causes of 
injury risks can be divided into technical factors (e.g., muscle force deviations, irregular 
movements), physiological factors (e.g., muscle fatigue, insufficient flexibility), and external factors 
(e.g., excessive training intensity, poor venue conditions). The system identifies the main causes 
through multi-dimensional data comparison. For example, if the early warning indicator is 
"abnormal ankle inversion angle", the system first analyzes the plantar pressure data to determine 
whether the uneven plantar pressure distribution causes ankle force imbalance; if the pressure 
distribution is normal, it analyzes the muscle force data to determine whether the coordination 
imbalance of calf muscles (such as the tibialis anterior and gastrocnemius) leads to a decrease in 
ankle control ability; if the muscle force data is normal, it combines training records to analyze 
whether recent excessive training intensity causes muscle fatigue or whether hard venues increase 
ankle force. The system outputs the cause analysis results in the form of a report, helping coaches 
and athletes identify the root cause of the risk and avoid blind training adjustments. 
 
In terms of intervention suggestions, based on the cause analysis results, the system provides 
targeted risk intervention plans, including immediate intervention and long-term intervention. 
Immediate intervention plans are used to quickly reduce current injury risks: for example, for 
excessive muscle load, it is recommended to immediately perform static stretching or cold 
compresses; for movement imbalances, it is recommended to pause take-off training and conduct 
specialized technical correction exercises (such as simulating take-off movements without hurdles). 
Long-term intervention plans are used to fundamentally eliminate risk factors: for example, for 
muscle coordination imbalance, a 2-week coordination training plan is recommended, including 
specific training movements (such as lunges and side leg lifts), training frequency (3 times a week), 
and training duration (30 minutes per session); for insufficient flexibility, a 15-minute daily 
dynamic stretching training is recommended, focusing on stretching the key muscle groups of the 
take-off and swing legs. At the same time, the system tracks the implementation of the intervention 
plan through the terminal feedback software and regularly evaluates risk changes. If the risk score 
does not decrease, the intervention plan is adjusted to ensure effective risk control. 
 
4.3.2 Athlete Awareness Improvement Mechanism 
An athlete’s awareness of their own technical and force characteristics directly affects the autonomy 
and efficiency of training. In traditional training, athletes mostly understand their own problems 
indirectly through coaches’ verbal feedback, resulting in vague awareness. The Intelligent Muscle 
Force Monitoring System helps athletes establish a clear understanding of their own techniques and 
force through a "data visualization feedback - active exploratory learning - closed-loop awareness 
construction" mechanism, realizing the transformation from "passive acceptance of guidance" to 
"active technical optimization". 
 
In terms of data visualization feedback, the system converts abstract muscle force and kinematic 
parameters into understandable information through intuitive charts, helping athletes establish a 
correlative awareness of "parameters - techniques - performance". Both the athlete-side and 
coach-side software have rich data visualization functions, such as muscle activation timing charts 
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(showing the activation timeline of 6 muscle groups to help athletes understand the coordination of 
muscle groups), force intensity heatmaps (indicating the distribution of muscle force intensity 
through color depth to help athletes identify areas of excessive or insufficient force), and take-off 
point deviation trend charts (showing changes in take-off point deviation over a period to help 
athletes recognize their progress). For example, by viewing the muscle activation timing chart, 
athletes can clearly find that "their hamstrings are always activated 0.2 seconds later than the 
quadriceps femoris", thereby understanding why coaches point out "incoherent ground force 
application"; by viewing the force intensity heatmap, athletes can intuitively see that "the force 
intensity of the iliopsoas in the swing leg is lower than the optimal standard", and further 
understand why the swing leg lifting speed is slow. This visualized feedback transforms abstract 
technical problems into specific data differences, helping athletes establish clear awareness and 
avoid vague understanding of coaches’ feedback. 
 
In terms of active exploratory learning, the system allows athletes to actively adjust their technical 
movements during training and verify the adjustment effects through real-time data feedback, 
cultivating their ability of independent exploration. In traditional training, athletes mostly adjust 
their techniques according to coaches’ instructions, lacking the process of independent trial and 
verification. With the support of the system, athletes can independently try to adjust the take-off 
point position, muscle force timing, or intensity under the guidance of coaches, and judge the 
effectiveness of the adjustments through real-time parameter feedback from the system. For 
example, athletes can try to move the take-off point back by 5 cm, and check through the system 
whether the hurdle clearance time is shortened and whether the muscle force parameters are closer 
to the optimal standard to verify whether this adjustment is suitable for themselves; they can also try 
to activate the hamstrings 0.1 seconds earlier and check through the system whether the muscle 
group activation timing is more coordinated, thereby finding the force timing that suits them. This 
process of active exploration not only enables athletes to gain a deeper understanding of their own 
technical characteristics but also cultivates their ability to analyze and solve problems independently, 
improving the autonomy of training. 
 
In terms of closed-loop awareness construction, through long-term training data tracking and 
feedback, the system helps athletes establish a "awareness - adjustment - verification - 
re-awareness" closed loop, realizing the continuous improvement of their awareness level. As 
training continues, the system automatically records the technical parameters, adjustment measures, 
and training effects of each training session for athletes, forming a personal training file. Athletes 
can review the file regularly to analyze the changing trend of their own technical problems, such as 
"after 2 weeks of timing training, the activation delay of the hamstrings has been reduced from 0.2 
seconds to 0.1 seconds", thereby verifying the effectiveness of the training method and 
strengthening correct awareness; at the same time, athletes can compare parameters of different 
stages to identify new technical problems, such as "the recent decrease in the uniformity of plantar 
pressure distribution may be caused by insufficient ankle strength", and then initiate a new process 
of awareness and adjustment. This closed-loop awareness model enables athletes’ awareness level 
to deepen continuously with training: from initially "understanding the problem" to 
"comprehending the cause", and then to "solving the problem independently", ultimately achieving 
the simultaneous improvement of technique and awareness. 
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5. Research Conclusions and Prospects 
5.1 Research Conclusions 
This study focuses on the application of the Intelligent Muscle Force Monitoring System in 
assisting elite hurdle athletes with personalized take-off point selection and muscle force precision 
improvement. Through theoretical analysis, system design, and application mechanism research, the 
following core conclusions are drawn: 
 
First, the Intelligent Muscle Force Monitoring System, relying on multimodal data fusion and 
artificial intelligence technology, breaks through the limitations of traditional hurdle 
training—where take-off point selection depends on experience and muscle force is difficult to 
quantify—and constructs a new "data-driven" paradigm for hurdle training. In traditional training, 
coaches’ judgment of take-off points and evaluation of muscle force are mostly based on subjective 
experience, lacking objective data support and making it difficult to adapt to the individual 
differences of elite athletes. However, the system designed in this study realizes the real-time 
quantification of muscle force and kinematic parameters during the take-off phase by integrating 
multimodal data collection technologies such as surface electromyography, inertial measurement, 
and plantar pressure sensing; it also achieves accurate prediction of the optimal take-off point and 
intelligent identification of muscle force deviations by constructing a personalized prediction model 
using machine learning algorithms. This provides an objective basis for the formulation and 
adjustment of training plans, promoting the transformation of hurdle training from "experience-led" 
to "a combination of data and experience". 
 
Second, the application mechanism of the system in personalized take-off point selection realizes 
the transformation of take-off points from "unified standards" to "individual adaptation", laying a 
foundation for improving hurdle clearance efficiency. Through a closed-loop mechanism of "data 
collection - model prediction - real-time adjustment - dynamic optimization", the system first 
establishes an exclusive optimal take-off point prediction model based on the athlete’s individual 
basic data and initial training data; then captures real-time data during training to predict the 
optimal take-off point under the current state and feed back deviation information; finally, 
continuously optimizes the model through long-term data accumulation to ensure that the take-off 
point always adapts to the athlete’s technical progress and state changes. This mechanism 
effectively solves the problem of individual deviations in traditional experience-based judgment, 
enabling the take-off point selection to fully adapt to each athlete’s physiological characteristics and 
technical strengths, and creating optimal biomechanical conditions for subsequent muscle force 
optimization and hurdle clearance efficiency improvement. 
 
Third, the application mechanism of the system in improving muscle force precision achieves 
refined regulation of muscle force from three dimensions—activation timing, force intensity, and 
muscle group coordination—directly promoting the improvement of hurdle clearance technical 
quality and competitive performance. In terms of activation timing regulation, the system helps 
athletes optimize force timing by identifying problems of delayed or premature muscle activation; 
in terms of force intensity regulation, it helps athletes achieve "on-demand force application" by 
quantifying force intensity parameters, avoiding excessive or insufficient force; in terms of muscle 
group coordination regulation, it helps athletes optimize coordination by analyzing the correlation 
parameters between muscle groups, reducing compensatory force. The coordinated regulation of 
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these three dimensions jointly improves muscle force precision, which is further transformed into 
improved competitive performance—such as shortened hurdle clearance time and enhanced 
inter-hurdle rhythm stability—verifying the practical value of intelligent monitoring technology for 
technical optimization. 
 
Fourth, the application of the system in injury risk prevention and athlete awareness improvement 
expands the value boundary of intelligent technology in hurdle training, realizing multi-dimensional 
empowerment of "technical optimization - injury prevention - awareness improvement". In terms of 
injury risk prevention, the system effectively reduces the incidence of injuries during the take-off 
phase by establishing an injury risk assessment model to issue real-time early warnings of potential 
risks and provide targeted intervention plans; in terms of athlete awareness improvement, it helps 
athletes establish a clear understanding of their own techniques and force through data visualization 
feedback, active exploratory learning, and closed-loop awareness construction, improving the 
autonomy and efficiency of training. These two aspects of application make the system not only a 
tool for technical optimization but also an important support for ensuring training safety and 
cultivating athletes’ comprehensive abilities, enriching the connotation of intelligent training. 
 
Fifth, the "multimodal data collection - intelligent analysis - real-time feedback - dynamic 
optimization" system framework and application mechanism constructed in this study provide a 
replicable paradigm for the application of intelligent technology in specialized track and field 
training (especially for technically complex events). As a representative of technically complex 
track and field events, hurdle races have typical demands for intelligent monitoring in 
training—requiring accurate capture of dynamic muscle force and kinematic parameters, adaptation 
to significant individual differences, and real-time feedback and adjustment. The system designed in 
this study fully considers these specialized demands in terms of hardware architecture, software 
functions, and application mechanisms, forming a complete solution. The core logic of this solution 
(such as multimodal data fusion, personalized model construction, and closed-loop application 
mechanism) can be migrated to other technical track and field events (such as high jump and long 
jump) or other sports with high technical requirements (such as gymnastics and fencing), providing 
theoretical and practical references for the development of intelligent training in the entire 
competitive sports field. 
 
5.2 Research Prospects 
Based on the achievements and limitations of this study, future research can be further carried out in 
three directions—technology optimization, application expansion, and theoretical deepening—to 
promote the continuous development and application of the Intelligent Muscle Force Monitoring 
System in the field of competitive sports. 
 
In the direction of technology optimization, future efforts should focus on improving the 
"adaptability", "intelligence", and "integration" of the system to further reduce the system’s 
interference with training and enhance the precision and comprehensiveness of services. In terms of 
adaptability optimization, it is necessary to develop more lightweight and flexible sensors—such as 
ultra-thin surface electromyography sensors that can be attached to the skin using flexible electronic 
technology, or textile sensors integrated into clothing—to reduce the restriction of sensors on 
athletes’ movements; at the same time, it is necessary to improve the system’s adaptability to 
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different training scenarios, such as optimizing the waterproof and high-temperature resistance of 
sensors for outdoor rainy or high-temperature environments to ensure the stability of data collection. 
In terms of intelligence optimization, more advanced artificial intelligence algorithms (such as 
convolutional neural networks (CNN) or recurrent neural networks (RNN) in deep learning) should 
be introduced to improve the accuracy of muscle force deviation identification and optimal take-off 
point prediction, especially the dynamic prediction ability when athletes’ states change (such as 
fatigue or injury); at the same time, an "intelligent decision support system" can be developed to 
automatically generate personalized training plan suggestions based on athletes’ long-term training 
data and competition performance, providing more comprehensive decision support for coaches. In 
terms of integration optimization, the system should be integrated with other training auxiliary 
equipment (such as intelligent training hurdles and resistance training equipment) to achieve data 
interconnection—for example, intelligent training hurdles can automatically adjust their positions 
according to the optimal take-off point predicted by the system, and resistance training equipment 
can automatically adjust resistance according to the muscle force intensity monitored by the 
system—forming an integrated intelligent training system of "monitoring - training - feedback". 
 
In the direction of application expansion, future efforts should focus on expanding the application 
scope of the system: from "elite athletes" to "diverse groups", from "hurdle events" to "multiple 
events", and from "training scenarios" to "full-cycle scenarios". In terms of group expansion, the 
system can be adapted to elite adolescent hurdle athletes and amateur hurdle enthusiasts—for 
adolescents, the feedback content of the system should be optimized, using more accessible 
language and animation to help adolescents understand technical problems; for amateur enthusiasts, 
the cost and operational complexity of the system should be reduced, and an entry-level version 
should be developed to meet the needs of mass fitness and basic training. In terms of event 
expansion, the technical framework and application mechanism of the system can be migrated to 
other technical track and field events—such as high jump (monitoring muscle force and take-off 
point selection during the take-off phase), long jump (monitoring technical parameters during the 
approach-take-off connection phase), and throwing events (monitoring muscle coordination during 
the rotation or approach phase); at the same time, the application of the system in 
non-track-and-field events can be explored—such as gymnastics (monitoring muscle force precision 
during movement completion) and fencing (monitoring muscle explosive force and timing control 
during strikes)—promoting the implementation of intelligent monitoring technology in a wider 
range of competitive sports fields. In terms of scenario expansion, the system can be applied to the 
"full-cycle management" of athletes, including the training period (daily training monitoring and 
optimization), pre-competition adjustment period (competitive state monitoring and pre-competition 
plan formulation), post-competition recovery period (injury risk assessment and rehabilitation 
training guidance), and post-injury rehabilitation period (muscle function recovery monitoring and 
rehabilitation progress evaluation)—realizing intelligent support for athletes’ entire sports careers. 
 
In the direction of theoretical deepening, future efforts should focus on strengthening 
interdisciplinary research between intelligent monitoring technology and sports disciplines, 
enriching the relevant theoretical system to provide a more solid theoretical support for technical 
application. On the one hand, it is necessary to deepen the theoretical research on "the integration of 
sports science and technology with competitive training", explore the transformation path of 
intelligent technology on training concepts, training methods, and training management models, 
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establish a theoretical framework of "data-driven training", and clarify the position and function 
mechanism of intelligent monitoring systems in the training system. On the other hand, it is 
necessary to strengthen research on "the ethics and standards of intelligent training". As the amount 
of athlete data collected by the system increases, ethical issues such as data privacy protection, data 
security management, and algorithm fairness (such as avoiding unfair training suggestions caused 
by algorithm bias) have become increasingly prominent. In the future, it is necessary to establish 
standards for the collection, storage, and use of intelligent training data, clarify the ownership and 
right to use of data, and formulate algorithm evaluation and audit mechanisms to ensure that the 
application of intelligent technology conforms to sports ethics and legal regulations. In addition, it 
is necessary to strengthen theoretical research on "the differences in intelligent training demands 
among different events", analyze the specific demands of different sports events (such as 
strength-based, endurance-based, and skill-based events) for intelligent monitoring, and provide 
theoretical guidance for targeted system design and application, avoiding a "one-size-fits-all" 
approach to technical application. 
 
In conclusion, the application of the Intelligent Muscle Force Monitoring System in elite hurdle 
training is an important exploration of sports science and technology empowering competitive 
sports. With the continuous optimization of technology, expansion of application scope, and 
deepening of theoretical system, such intelligent technologies will surely play a greater role in 
improving the level of competitive sports training, cultivating elite athletes, and promoting the 
high-quality development of sports undertakings, providing strong support for the realization of the 
"Sports Power" goal. 
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